A Variational Approach to Strongly Damped Wave Equations
نویسنده
چکیده
We discuss a Hilbert space method that allows to prove analytical well-posedness of a class of linear strongly damped wave equations. The main technical tool is a perturbation lemma for sesquilinear forms, which seems to be new. In most common linear cases we can furthermore apply a recent result due to Crouzeix–Haase, thus extending several known results and obtaining optimal analyticity angle.
منابع مشابه
Finding the Optimal Place of Sensors for a 3-D Damped Wave Equation by using Measure Approach
In this paper, we model and solve the problem of optimal shaping and placing to put sensors for a 3-D wave equation with constant damping in a bounded open connected subset of 3-dimensional space. The place of sensor is modeled by a subdomain of this region of a given measure. By using an approach based on the embedding process, first, the system is formulated in variational form;...
متن کاملQualitative Properties of Coupled Parabolic Systems of Evolution Equations
We apply functional analytical and variational methods in order to study well-posedness and qualitative properties of evolution equations on product Hilbert spaces. To this aim we introduce an algebraic formalism for matrices of sesquilinear mappings. We apply our results to parabolic problems of different nature: a coupled diffusive system arising in neurobiology, a strongly damped wave equati...
متن کاملWave Propagation Approach to Fluid Filled Submerged Visco-Elastic Finite Cylindrical Shells
Multi-layer orthotropic finite cylindrical shells with a viscoelastic core in contact with fluids are gaining increasing importance in engineering. Vibrational control of these structures is essential at higher modes. In this study, an extended version of the wave propagation approach using first-order shear deformation theory of shell motion is employed to examine the free vibration of damped ...
متن کاملAnalytical approach of buckling strength of yielding damped braced core (YDBC)
Abstract: Previous research on bracing members show that the ductility of bracing members is compromised due to the buckling phenomena. Therefore, many researchers have tried to use special considerations to increase the fracture life of bracing members. Some of these recommendations such as increasing the slenderness ratio, using lower width to thickness ratio, increasing the out-of-p...
متن کاملابررسانای d- موجی، پادفرومغناطیس و مایع اسپینی در ابررساناهای آلی شبه دوبعدی
The self-energy-functional approach is a powerful many-body tool to investigate different broken symmetry phases of strongly correlated electron systems. We use the variational cluster perturbation theory (also called the variational cluster approximation) to investigate the interplay between the antiferromagnetism and d-wave superconductivity of κ-(ET)2 X conductors. These compounds are desc...
متن کامل